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Module 4
ENG 431: Safety Chemical Processes

Annik Nanchen

Heat Confinement



Heat Accumulation

Thermal Safety of
Chemical Processes

 |ntroduction

* Mechanism of heat transfer
— Stirred systems: forced convection

— Solid systems, VisCous liquids: condu_ct|on Chapter 13 Chapter 12
— Low viscosity liquids: natural convection

Analysis procedure

Practical examples



How realistic are adiabatic conditions?

tirred Tank Reactor
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Heat accumulation

Heat accumulation situations: effect of mass
« Decomposition of a reaction mass. ATad 200°C, c¢'p: 1.7 kJ/kg.K, Ea: 100 kJ/mol
« Reaction mass is in different containers (different sizes)

Heat release | Temperature Adiabatic
rate at beginning
(Wikg) of storage 0.5 kg 50 kg 5000 kg
(°C)

AT [°C]
10 129
Released after [h]
AT [°C]
1 100
Released after [h]
AT [°C]
0.1 75
Released after [h]
AT [°C]
0.01 53
Released after [h]



Heat removal

o Agitated vessel: Main resistance to heat transfer is
located at the wall

 Unstirred non-insulated storage tank containing liquid:
main resistance to heat transfer is located outside of the
wall (natural convection in the liquid)

o Storage silo containing a solid: main resistance to heat
transfer in the solid (conduction)



Heat Accumulation in Industrial Context

 Hot discharge

» Heating chambers

e Storage

e Transport

* Inadvertent shut down

» Heated pipes
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Heat balance using time scales

Heat production Heat removal
A Temperature ATemperature
TMRad ~ / 4
Runaway- / “\_Half-time-Stirred

<Mme g ,:”/ -

\,
\,

h

unstirred
- - -
adiabatic runaway Time Cooling curve Time
Thermal Explosion if:  Heat production > Heat removal

Adiabatic

Runaway-time < Cooling time
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Heat Accumulation

e |ntroduction

Mechanism of heat transfer

— Stirred systems, forced convection

— Solid systems, viscous liquids, conduction
— Low viscosity liquids, Natural convection

Analysis procedure

Practical examples



Agitated System

e Semenov
 Newtonian cooling

q., =U -A-(T —TC)

U : Overal heat transfer coefficient [W m2 K‘l]

A: Heat exchange area | m* |

T : Temperature reacting medium[°C, K |

T. : Temperature cooling medium [°C, K|
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Heat Balance

qrx = qex =er.p-V 'kO °exp|:R

}:u AT -=T,)

crit

d
O erX.p.V.kO.RTZ

crit

exp| —= ~ Wy a
RT dT

crit
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Heat Balance

Solves both equation if

AT

2
—T T RTCflt ~ &
crit crit E E

crit

—E 1 1
0V -k, -ex — U-A-AT
er 10 0 p I R [T TO j:| crit

K, € AT, =

R\T

RT:

crit

-E({1 1 —E
- jz —(Tcrit _TO) =1

To

crit

T

U-A RT?

pV-c E

1 RT/

T =

=TMR_4

k,-AT, E —

ty, =In(2)-7

4

P

po-V-C
U-A

e Gy = O €XP| | =
e o X R Tcrit TO

2
ATcrlt RTO
E
e
MRad — m . t1/2 — 392 : t1/2
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Agitated System

e Semenov

TMR,, > 392-t,,

A

/

- pV-C
U-A
t,, =In(2) -7

22



23

Heat Accumulation

e |ntroduction

Mechanism of heat transfer

— Stirred systems, forced convection

— Solid systems, viscous liquids, conduction
— Low viscosity liquids, Natural convection

Analysis procedure

Practical examples



Heat Conduction in a Solid

Aex) 0 (x+dx)

G=-AVT

Thermal conductivity: A [W/(K-m)]

x+dx

Thermal diffusivity: a [m?/s]

T _p-C,oT 17T

ox> A St a ot

o - A heat conducted

p-C, heat stored
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Systems with Temperature Profile

Frank-Kamenetskii
TO - Ta

mbiant

X=rI,=T=T,  Conditions at the wall

x=0= ar —0o Conditions at the center
OX
0 = E-(T-Ty) 7=2 Change of variables
RT,’ fo

V,°0=—5-exp(0)

7 Conduction equation

5_100'qu. E . 2
o 2 0
A RT,

5crit A RT02

r

crit —

pP-UyE

r: critical radius [m]
A: Thermal conductivity [W/(K-m)]

Oit- form factor






Critical Radius

500 ——

Critical radius (m)

\ 5crit A RT02

rcri = I
NAN A o E

0.50 ~_ T(C)

0 20 40 60 80 100 120



Form Factor Frank-Kamenetskii criterion

Slab
Infinite Cylinder
Sphere

Cylinderh=3r
Cube

8crit =0.88
8crit =20

8crit =3.32
8crit =231

8crit =23
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Systems with Temperature Profiles

Time Scale

2

e Sphere TMR,, > 0.3-1

d
2

» Cylinder  TMR_, > 0.5-1

d
1.14-r*

* Slab TMR,, >

d
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Conduction in solid and transfer at walll

Thomas Model

2
a-l; — 1 é’T B X d Q_E(T-TO)
Ox° a ot Z—r—o and &= RT 2
Wall ﬂ,d_T+h-(TS_TO):O ax=r d_9+|3i,98:0 at 7=1
dX dz

. h-r
Center d—T:O a x=0 Bl = 0
dx A

!@Wﬁ




Conduction in solid and transfer at walll

Zero order reaction 2
v0=99,%09_00 oo

dz2 7 dz dr
at A

T = —2 a - @
Iy p-Cp

Reaction characteristics Heat transfer
Do q'o E > B 1+ k
5 — . - I 5crit o
S Bi
Slab: k=0 g, =239

o from Thomas model # & from Frank-Kamenetskii model

Cylinder: k=1 g, =272

Sphere: k=2 g, =301
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Finite elements

n-1 n+1
qin qprod qout
Centre Paroi
- —_—
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Heat accumulation:
hot discharge into a drum

[°C]
Conversion
average 0.7%
0,
T.260.0 °C at center 1.5%
60
55 1
50 - Center
45 1
40 1
35 1
30 1
o5 - Wall
20 1 1 1 1 1 1 1
0 2 8 10

[}

Radius
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Heat accumulation

[°C]

240 1
220 1
200 1
180 1
160 1
140 1
120 1
100 1

80 T

60 1

40 1

20

T,=70°C
Quality !
Conversion
average 6 %
at center 20 %
Wall

Center
4 6 8 10 [h]

[°C]

240 1
220 1
200 1
180
160
140
120
100

80 1

60

40 1

T,=71.5°C
Safety
problem !
Center
Wall
2 4 8 10 [h]
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Heat Accumulation

» Mechanism of heat transfer

— Low viscosity liquids, Natural convection
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Natural Convection

Nu — Cte . Ram
with: Nu =E
A
3 2 1
and: Ra = 3 p-L-p”-Cp-AT — Gr-Pr
p-A
Turbulent flow : Ra > 10° Nu=0,13 Ra?

Intermediate flow : 10°< Ra<10° Nu=0,59 Ra*

Laminar flow : Ra < 10° Nu = 1,36 Ral®

Turbulent flow: likely to have
natural convection.

Otherwise, safe not rely on natural
convection
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		Turbulent flow : Ra > 109

		Nu=0,13 Ra1/3



		Intermediate flow : 104< Ra < 109

		Nu = 0,59 Ra1/4



		Laminar flow : Ra < 104

		Nu = 1,36 Ra1/6






Heat Accumulation

 Analysis procedure
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Decision tree (Part 1)

Assume
Adiabatic
conditions

tconf << TMRad

Agitated
system?

no

Semenov
Model

TMRad >3.92t% ?

Natural
Convection?

no

Heat balance
Nu =f (Ra)

grx < gex?

v

Conductive
system

no

A 4
Non Critical
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Decision tree (Part 2)

Conductive
system

yes—p

Frank-Kamenetskii
Critical radius

r < rcrit ?

no

v

Thomas Model
ocrit

d < dcrit ?

v

Finite Elements
Model
Kinetics

Stable ?

3l

Critical situation

Non critical
situation
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Heat Accumulation

 Practical examples
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Where may Heat Accumulation Occur ?

« Distillation residue

. i + Isolated equipment
i « Continous processes
at shut down

B L h@_@ Equipment:

2

DES




Where may Heat Accumulation Occur ?

o Storage

e Hot discharge

« Discharge after thermal stress
(Drying, Milling, Blending,
Formulation)

Monitor Temperature at Center !
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Where may Heat Accumulation Occur ?

 Tanks with reactive contents
* |nsulated storage tanks
« Changes in thermal insulation

Monitor Temperatur at center !
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Where may Heat Accumulation Occur ?

Melting in hot air
Heating chamber

Monitor Temperature at Center of bulk !
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Where may Heat Accumulation Occur ?

Transport
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