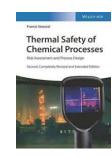
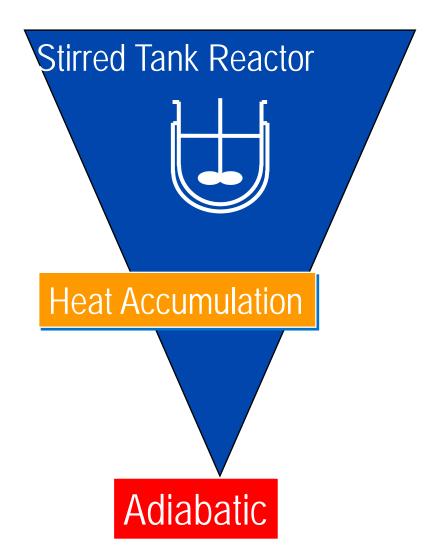

Heat Confinement

Module 4


ENG 431: Safety Chemical Processes

Annik Nanchen

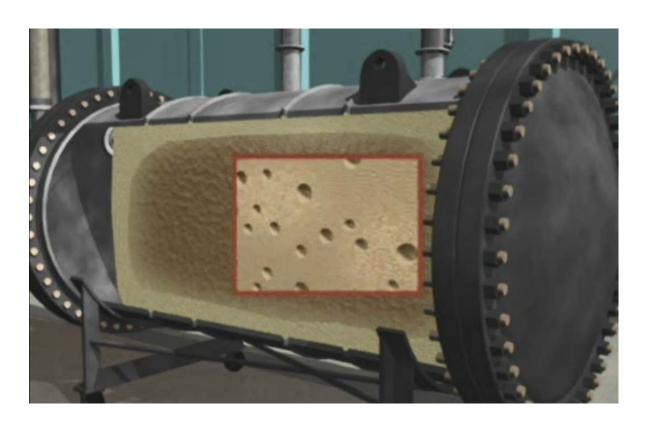

- Introduction
- Mechanism of heat transfer
 - Stirred systems: forced convection
 - Solid systems, viscous liquids: conduction
 - Low viscosity liquids: natural convection
- Analysis procedure
- Practical examples

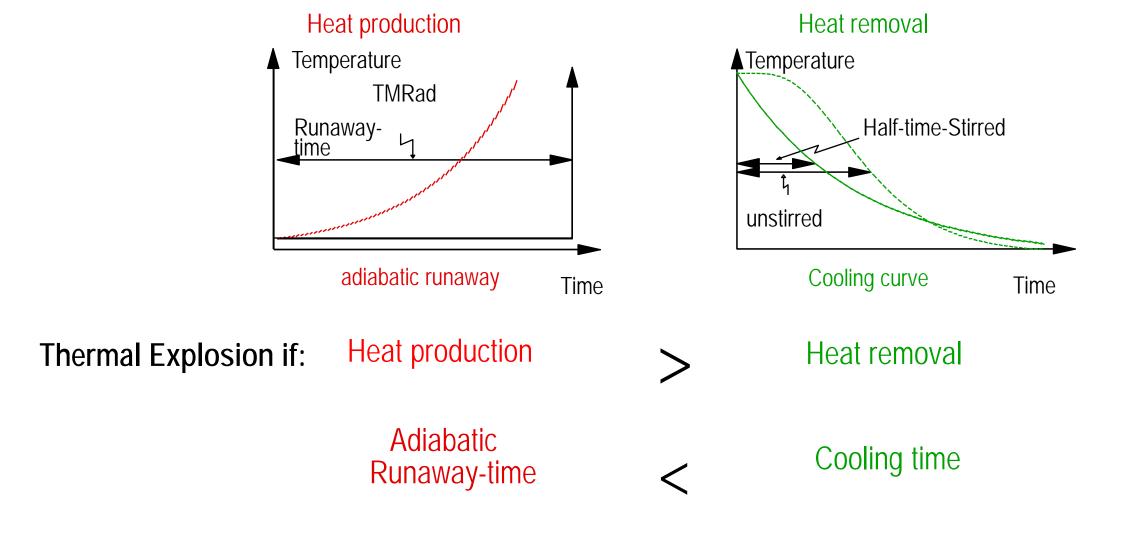
Chapter 12

Heat accumulation situations: effect of mass

- Decomposition of a reaction mass. ΔTad 200°C, c'p: 1.7 kJ/kg.K, Ea: 100 kJ/mol
- Reaction mass is in different containers (different sizes)

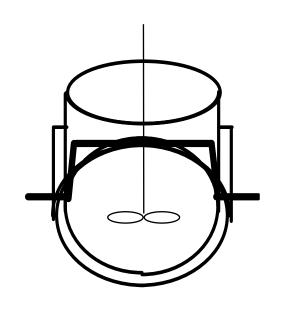
Heat release rate (W/kg)	Temperature at beginning of storage (°C)	Adiabatic	Mass			
			0.5 kg	50 kg	5000 kg	
10	129					ΔT [°C]
						Released after [h]
1	100					ΔT [°C]
						Released after [h]
0.1	75					ΔT [°C]
						Released after [h]
0.01	53					ΔT [°C]
						Released after [h]


 Agitated vessel: Main resistance to heat transfer is located at the wall


 Unstirred non-insulated storage tank containing liquid: main resistance to heat transfer is located outside of the wall (natural convection in the liquid)

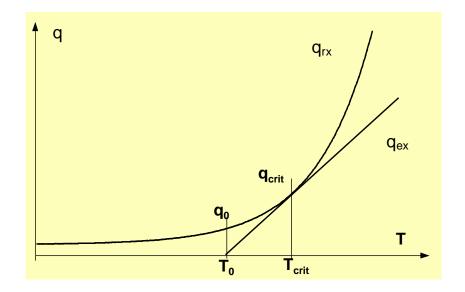
• Storage silo containing a solid: main resistance to heat transfer in the solid (conduction)

Heat Accumulation in Industrial Context


- Hot discharge
- Heating chambers
- Storage
- Transport
- Inadvertent shut down
- Heated pipes

- Introduction
- Mechanism of heat transfer
 - Stirred systems, forced convection
 - Solid systems, viscous liquids, conduction
 - Low viscosity liquids, Natural convection
- Analysis procedure
- Practical examples

- Semenov
- Newtonian cooling


$$q_{ex} = U \cdot A \cdot (T - T_C)$$

 $U: Overal\ heat\ transfer\ coefficient\ \left\lceil W\ m^{-2}\ K^{-1} \right\rceil$

A: Heat exchange area $[m^2]$

 $T: Temperature\ reacting\ medium [°C, K]$

 T_C : Temperature cooling medium [${}^{\circ}C, K$]

$$q_{rx} = q_{ex} = Q_{rx} \cdot \rho \cdot V \cdot k_0 \cdot \exp\left[\frac{-E}{RT_{crit}}\right] = U \cdot A \cdot (T_{crit} - T_0)$$

$$\frac{dq_{rx}}{dT} = Q_{rx} \cdot \rho \cdot V \cdot k_0 \cdot \frac{E}{RT_{crit}^2} \cdot \exp\left[\frac{-E}{RT_{crit}}\right] = \frac{dq_{ex}}{dT} = U \cdot A$$

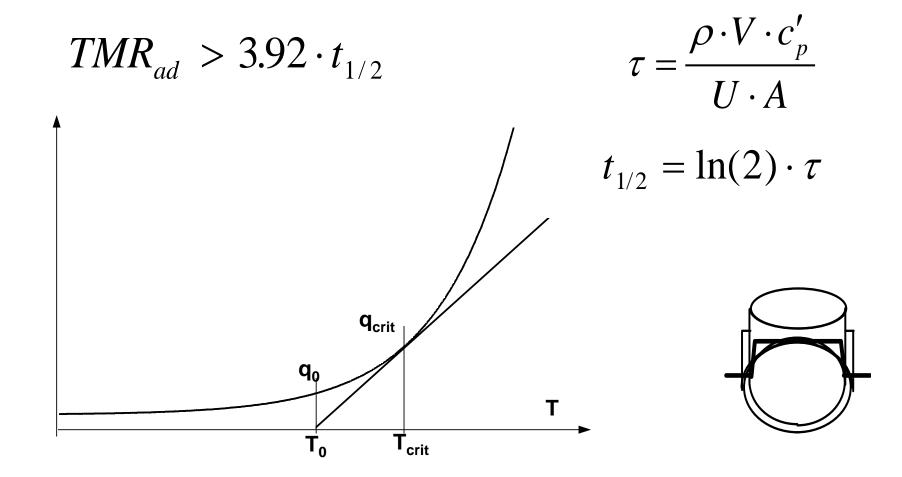
Solves both equation if
$$\Delta T_{crit} = T_{crit} - T_0 = \frac{RT_{crit}^2}{E} \approx \frac{RT_0^2}{E}$$

$$Q_{rx} \cdot \rho \cdot V \cdot k_0 \cdot \exp\left[\frac{-E}{R}\left(\frac{1}{T_{crit}} - \frac{1}{T_0}\right)\right] = U \cdot A \cdot \Delta T_{crit} \quad \text{ since } \quad q_{crit} = q_0 \cdot \exp\left[\frac{-E}{R}\left(\frac{1}{T_{crit}} - \frac{1}{T_0}\right)\right]$$

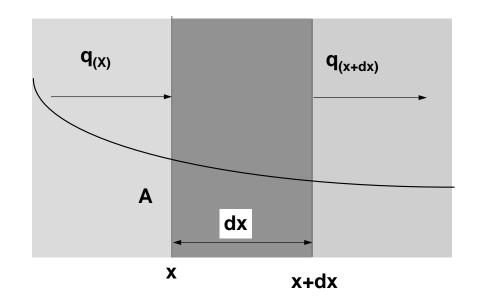
$$\frac{-E}{R}\left(\frac{1}{T_{crit}} - \frac{1}{T_0}\right) \approx \frac{-E}{RT_{crit}^2} (T_{crit} - T_0) = 1 \quad \text{ since } \quad \Delta T_{crit} = \frac{RT_0^2}{E}$$

$$U \cdot A = RT^2$$

$$k_{0} \cdot e \cdot \Delta T_{ad} = \frac{U \cdot A}{\rho \cdot V \cdot c'_{p}} \cdot \frac{RT_{0}^{2}}{E}$$


$$\frac{1}{k_{0} \cdot \Delta T_{ad}} \cdot \frac{RT_{0}^{2}}{E} = TMR_{ad}$$

$$t_{1/2} = \ln(2) \cdot \tau$$


$$\tau = \frac{\rho \cdot V \cdot c'_{p}}{U \cdot A}$$

$$TMR_{ad} = \frac{e}{\ln(2)} \cdot t_{1/2} = 3.92 \cdot t_{1/2}$$

• Semenov

- Introduction
- Mechanism of heat transfer
 - Stirred systems, forced convection
 - Solid systems, viscous liquids, conduction
 - Low viscosity liquids, Natural convection
- Analysis procedure
- Practical examples

$$\vec{q} = -\lambda \vec{\nabla} T$$

Thermal conductivity: λ [W/(K·m)]

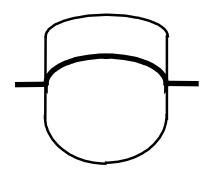
$$\frac{\partial^2 T}{\partial x^2} = \frac{\rho \cdot c_p'}{\lambda} \frac{\partial T}{\partial t} = \frac{1}{a} \frac{\partial T}{\partial t}$$

Thermal diffusivity: a [m²/s] $a = \frac{\lambda}{\rho \cdot c'_{n}} = \frac{\text{heat conducted}}{\text{heat stored}}$

Systems with Temperature Profile

Frank-Kamenetskii

$$T_0 = T_{ambiant}$$

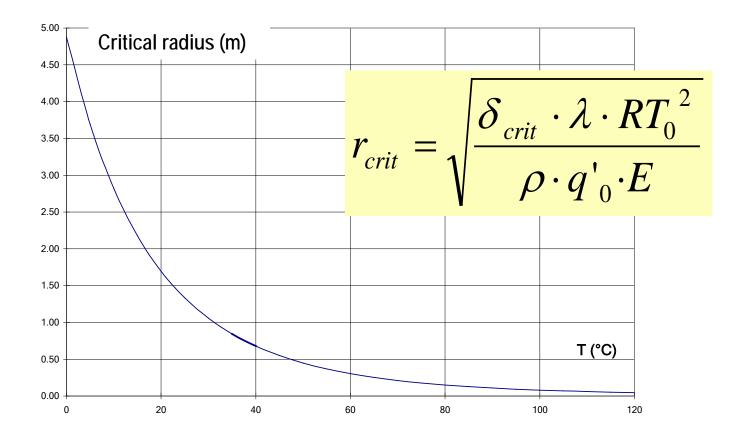

$$x = r_0 \Rightarrow T = T_0$$
 Conditions at the wall

$$x = 0 \Rightarrow \frac{\partial T}{\partial x} = 0$$
 Conditions at the center

$$\theta = \frac{E \cdot (T - T_0)}{RT_0^2} \qquad z = \frac{x}{r_0} \qquad \text{Change of variables}$$

$$\nabla_z^2 \theta = -\delta \cdot \exp(\theta)$$
 Conduction equation

$$\mathcal{S} = \frac{\rho_0 \cdot q'_0}{\lambda} \cdot \frac{E}{RT_0^2} \cdot r_0^2 \qquad \text{Solution}$$


$$r_{crit} = \sqrt{\frac{\delta_{crit} \cdot \lambda \cdot RT_0^2}{\rho \cdot q'_0 \cdot E}}$$

r: critical radius [m]

 λ : Thermal conductivity [W/(K·m)]

 $\delta_{\text{crit}}\!\!:$ form factor

Critical Radius

• Slab

$$\delta_{crit} = 0.88$$

• Infinite Cylinder

$$\delta_{\rm crit} = 2.0$$

• Sphere

$$\delta_{\text{crit}} = 3.32$$

• Cylinder h = 3 r

$$\delta_{crit} = 2.37$$

• Cube

$$\delta_{\text{crit}} = 2.5$$

Time Scale

• Sphere
$$TMR_{ad} > \frac{0.3 \cdot r^2}{a}$$

• Cylinder
$$TMR_{ad} > \frac{0.5 \cdot r^2}{a}$$

• Slab
$$TMR_{ad} > \frac{1.14 \cdot r^2}{a}$$

Thomas Model

$$\frac{\partial^2 T}{\partial x^2} = \frac{1}{a} \frac{\partial T}{\partial t} \qquad z = \frac{x}{r_0} \quad \text{and} \quad \theta = \frac{\mathrm{E} \left(\mathrm{T} - \mathrm{T}_0 \right)}{R T_0^2}$$

$$\forall \text{Wall} \qquad \lambda \frac{dT}{dx} + h \cdot \left(T_s - T_0 \right) = 0 \quad \text{à} \ x = r_0 \qquad \frac{d\theta}{dz} + Bi \cdot \theta_s = 0 \quad \text{at} \quad z = 1$$

$$\mathsf{Center} \qquad \frac{dT}{dx} = 0 \quad \text{à} \quad x = 0 \qquad Bi = \frac{h \cdot r_0}{\lambda}$$

$$\forall \mathsf{Variable \ exchange}$$

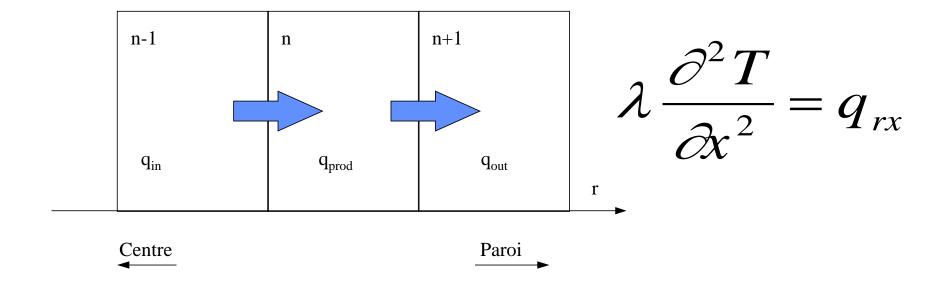
Zero order reaction

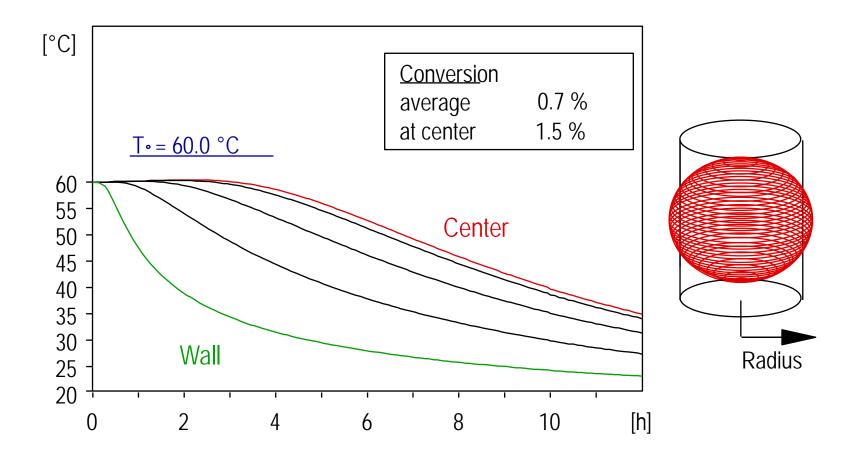
$$\nabla_z^2 \theta = \frac{d^2 \theta}{dz^2} + \frac{k}{z} \frac{d\theta}{dz} = \frac{d\theta}{d\tau} - \delta \exp \theta$$

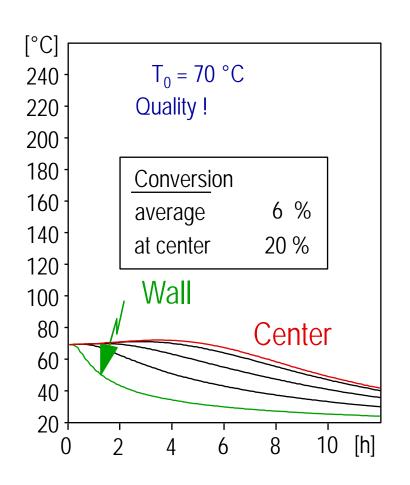
$$\tau = \frac{at}{r_0^2} \qquad a = \frac{\lambda}{\rho \cdot Cp'}$$

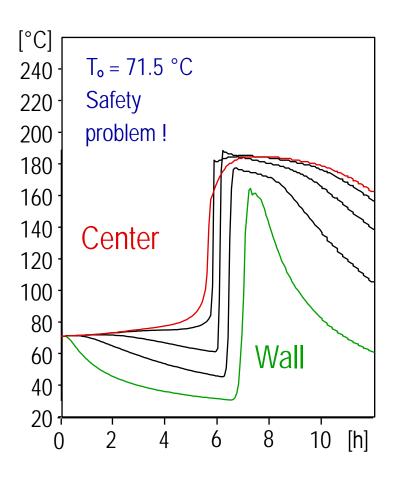
Reaction characteristics

$$\delta = \frac{\rho_0 \cdot q'_0}{\lambda} \cdot \frac{E}{RT_0^2} \cdot r_0^2$$


Heat transfer


$$\delta_{crit} = \frac{1+k}{e \cdot \left(\frac{1}{\beta_{\infty}} - \frac{1}{Bi}\right)}$$


Slab: k = 0 $\beta_{\infty} = 2.39$


Cylinder: k = 1 $\beta_{\infty} = 2.72$ $Bi = \frac{h \cdot r_0}{\lambda}$ Sphere: k = 2 $\beta_{\infty} = 3.01$

 δ from Thomas model $\neq \delta$ from Frank-Kamenetskii model

- Introduction
- Mechanism of heat transfer
 - Stirred systems, forced convection
 - Solid systems, viscous liquids, conduction
 - Low viscosity liquids, Natural convection
- Analysis procedure
- Practical examples

$$Nu = C^{te} \cdot Ra^{m}$$
with: $Nu = \frac{hL}{\lambda}$
and: $Ra = \frac{g \cdot \beta \cdot L^{3} \cdot \rho^{2} \cdot Cp' \cdot \Delta T}{\mu \cdot \lambda} = Gr \cdot Pr$

Turbulent flow: $Ra > 10^9$

 $Nu=0.13 Ra^{1/3}$

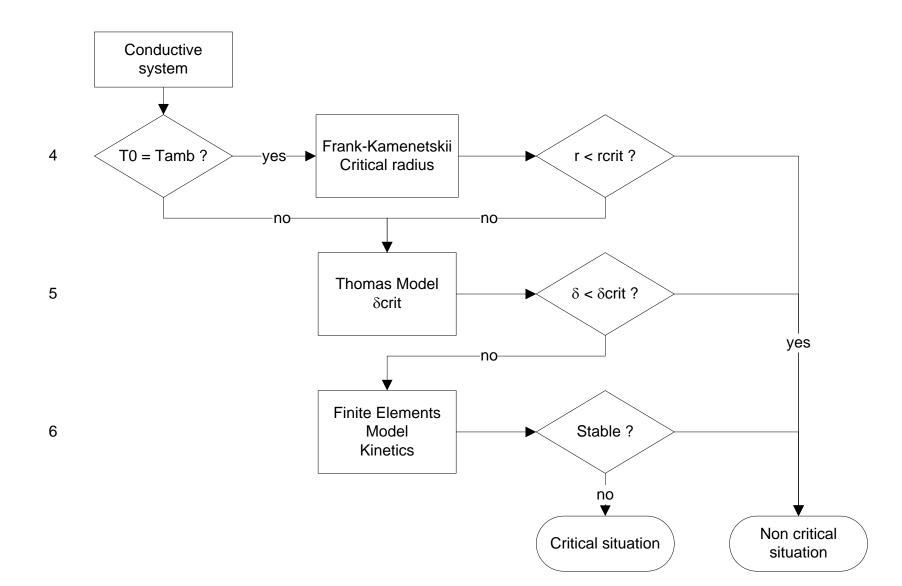
Intermediate flow: $10^4 < Ra < 10^9$

 $0^4 < Ra < 10^9$ Nu = 0,59 Ra^{1/4}

Laminar flow: $Ra < 10^4$

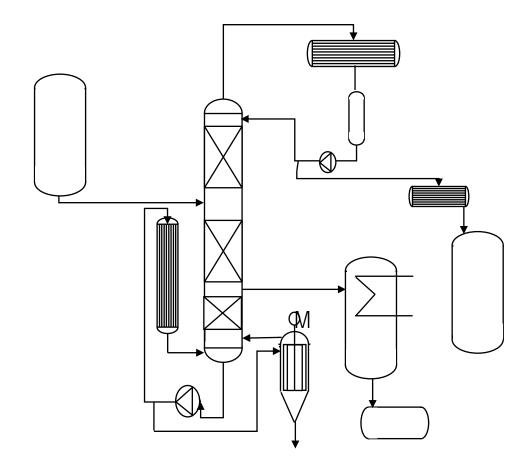

 $Nu = 1,36 \text{ Ra}^{1/6}$

Turbulent flow: likely to have natural convection.


Otherwise, safe not rely on natural convection

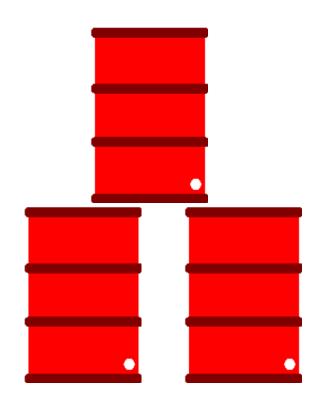
- Introduction
- Mechanism of heat transfer
 - Stirred systems, forced convection
 - Solid systems, viscous liquids, conduction
 - Low viscosity liquids, Natural convection
- Analysis procedure
- Practical examples

Decision tree (Part 1)

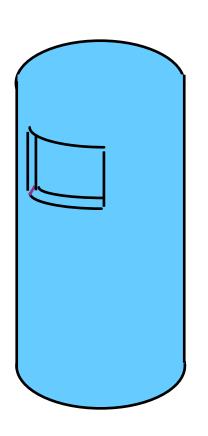


Decision tree (Part 2)

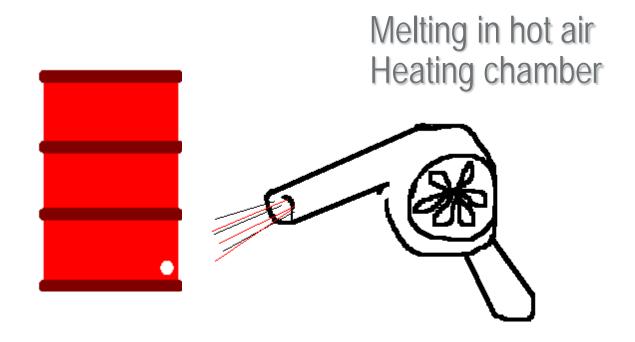
- Introduction
- Mechanism of heat transfer
 - Stirred systems, forced convection
 - Solid systems, viscous liquids, conduction
 - Low viscosity liquids, Natural convection
- Analysis procedure
- Practical examples


Where may Heat Accumulation Occur?

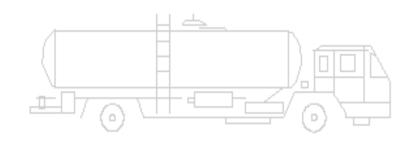
Equipment:


- Distillation residue
- Isolated equipment
- Continous processes at shut down

Where may Heat Accumulation Occur?


- Storage
- Hot discharge
- Discharge after thermal stress (Drying, Milling, Blending, Formulation)

Monitor Temperature at Center!


- Tanks with reactive contents
- Insulated storage tanks
- Changes in thermal insulation

Monitor Temperatur at center!

Monitor Temperature at Center of bulk!

Transport

