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Heat Accumulation

• Introduction 

• Mechanism of heat transfer
– Stirred systems: forced convection 
– Solid systems, viscous liquids: conduction
– Low viscosity liquids: natural convection

• Analysis procedure

• Practical examples
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How realistic are adiabatic conditions?
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Adiabatic

Stirred Tank Reactor

Heat Accumulation



Heat accumulation
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Heat accumulation situations: effect of mass
• Decomposition of a reaction mass. ∆Tad 200°C, c‘p: 1.7 kJ/kg.K, Ea: 100 kJ/mol
• Reaction mass is in different containers (different sizes)

Heat release 
rate 

(W/kg)

Temperature 
at beginning 
of storage

(°C)

Adiabatic Mass

0.5 kg 50 kg 5000 kg

10 129
∆T [°C]

Released after [h]

1 100
∆T [°C]

Released after [h]

0.1 75
∆T [°C]

Released after [h]

0.01 53
∆T [°C]

Released after [h]



Heat removal

• Agitated vessel: Main resistance to heat transfer is 
located at the wall

• Unstirred non-insulated storage tank containing liquid: 
main resistance to heat transfer is located outside of the 
wall (natural convection in the liquid)

• Storage silo containing a solid: main resistance to heat 
transfer in the solid (conduction)
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Heat Accumulation in Industrial Context

• Hot discharge

• Heating chambers

• Storage

• Transport

• Inadvertent shut down

• Heated pipes
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Heat balance using time scales
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Temperature Temperature

Time Time

Heat production Heat removal

adiabatic runaway Cooling curve

unstirred

Half-time-Stirred

Thermal Explosion if:

TMRad
Runaway-
time

Adiabatic
Runaway-time Cooling time<

> Heat removalHeat production



Heat Accumulation

• Introduction 

• Mechanism of heat transfer
– Stirred systems, forced convection 
– Solid systems, viscous liquids, conduction
– Low viscosity liquids, Natural convection

• Analysis procedure

• Practical examples
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Agitated System

• Semenov
• Newtonian cooling
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Heat Balance
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Heat Balance
21
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Agitated System
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• Semenov
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Heat Accumulation
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Heat Conduction in a Solid
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Systems with Temperature Profile
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Frank-Kamenetskii
T0 = Tambiant
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Critical Radius
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Form Factor Frank-Kamenetskii criterion
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δcrit = 0.88

δcrit = 2.0

δcrit = 3.32

δcrit = 2.37

δcrit = 2.5

• Slab

• Infinite Cylinder

• Sphere

• Cylinder h = 3 r

• Cube



Systems with Temperature Profiles

Time Scale

• Sphere

• Cylinder

• Slab
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Conduction in solid and transfer at wall
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Thomas Model
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Conduction in solid and transfer at wall
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Zero order reaction

Slab:  0    2.39
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Finite elements 
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Heat accumulation:
hot discharge into a drum

32

T  = 60.0 °C

Conversion
average
at center

0.7 %
1.5 %

0 2 4 6 8 10 [h]

60
55
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25
20
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Center

Wall

[°C]



Heat accumulation
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Natural Convection
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Turbulent flow : Ra > 109 Nu=0,13 Ra1/3 

Intermediate flow : 104< Ra < 109 Nu = 0,59 Ra1/4 

Laminar flow : Ra < 104 Nu = 1,36 Ra1/6 

 

Turbulent flow: likely to have 
natural convection.

Otherwise, safe not rely on natural 
convection


		Turbulent flow : Ra > 109

		Nu=0,13 Ra1/3



		Intermediate flow : 104< Ra < 109

		Nu = 0,59 Ra1/4



		Laminar flow : Ra < 104

		Nu = 1,36 Ra1/6
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Decision tree (Part 1)
37

Assume
Adiabatic
conditions

tconf << TMRad

Agitated 
system? TMRad > 3.92 t ½ ?

no

Natural
Convection? qrx < qex?Heat balance

Nu = f (Ra)yes

no no

Conductive 
system

1

2

no

3

no

Semenov
Modelyes

Non Critical



Decision tree (Part 2)
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Conductive 
system

T0 = Tamb ? Frank-Kamenetskii
Critical radius r < rcrit ?yes

Thomas Model
δcrit δ < δcrit ?

Non critical 
situation

no

yes

no

Finite Elements
Model

Kinetics

no

4

5

6 Stable ?

Critical situation

no
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Where may Heat Accumulation Occur ?
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Equipment:
• Distillation residue
• Isolated equipment
• Continous processes

at shut downM



Where may Heat Accumulation Occur ?
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• Storage

• Hot discharge

• Discharge after thermal stress 
(Drying, Milling, Blending, 
Formulation)

Monitor Temperature at Center !



Where may Heat Accumulation Occur ?
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• Tanks with reactive contents
• Insulated storage tanks
• Changes in thermal insulation

Monitor Temperatur at center !



Where may Heat Accumulation Occur ?
43

Monitor Temperature at Center of bulk !

Melting in hot air
Heating chamber



Where may Heat Accumulation Occur ?
44

Transport
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